New downstream synthetic route of Cinnolin-4-ol

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Cinnolin-4-ol reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.875-66-1, Cinnolin-4-ol it is a common compound, a new synthetic route is introduced below.875-66-1

Cinnolin-4(1H)-one (5.0 g, 34.24 mol) was added to the K2CO3 ( 7.08 g, 51.36 mol) and 3- bromoprop-1-yne (3.11 mL, 41.09 mol) in ACN (20 mL) and the mixture stirred at 80 C for 4-8 h then reaction mixture was cool to rt. The mixture was concentrated, diluted with H2O (30 mL), and extracted with EtOAc (3 ¡Á 50 mL). The combined organic layers were dried (MgSO4), filtered and concentrated. Flash chromatography gave 4-(prop-2-yn-1-yloxy)cinnoline (13a). Synthesis of 4-(prop-2-yn-1-yloxy)cinnoline (4a). Yield (2.60 g, 65.5%). m.p. 100-110 C. Colourless solid.1H NMR (400 MHz, CDCl3) delta 8.34 (dd, J = 1.2, 1.2 Hz, 1H, Ar), 7.81-7.77 (m, 2H, Ar), 7.60 (d, J = 8.8 Hz, 1H, Ar), 7.46 (t, J = 8.0 Hz,1H, Ar), 5.14 (d, J = 2.4 Hz, 1H, -OCH2), 2.51 (t, J = 2.4 Hz, 1H, Alky). 13C NMR (100 MHz, CDCl3) delta 171.2, 140.6, 140.1, 134.0, 126.0, 125.2, 124.6, 115.1, 76.0, 75.7, 46.2. ESI-MS: m/z 185.27 [M+H]+. Anal. Calc. (C11H8N2O) C: 71.73; H: 4.38; N: 15.21. Found C: 71.80; H: 4.04; N: 15.28%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Cinnolin-4-ol reaction routes.

Reference£º
Article; Boda, Sathish Kumar; Bommagani, Mohan Babu; Chitneni, Prasad Rao; Mokenapelli, Sudhakar; Yerrabelli, Jayaprakash Rao; Synthetic Communications; (2020);,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some scientific research about Cinnolin-4-ol

The chemical industry reduces the impact on the environment during synthesis, Cinnolin-4-ol, , I believe this compound will play a more active role in future production and life.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.875-66-1, Cinnolin-4-ol it is a common compound, a new synthetic route is introduced below.875-66-1

875-66-1, To a suspension of NaH (60% in mineral oil, 0.099 g, 2.46 mmol) in DMF (5 mL) was added cinnolin-4-ol (prepared from 2-aminoacetophenone according to the procedures described in U. S. Patent No. 4,620, 000), 0. 300 g, 2.05 mmol) in DMF (2 mL) dropwise. The reaction mixture was warmed at 40 C and stirred for 30 minutes. After cooling, N-phenyltrifluoromethanesulfonimide (0.880 g, 2.46 mmol) in DMF (2 mL) was added, and the reaction mixture was stirred at room temperature for 1 hour. 1-Boc piperazine (0.765 g, 4.11 mmol) was added to the mixture. The reaction was stirred at 80 C for 4 hours. After cooling, the mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water, brine, dried and concentrated. The residue was purified by column chromatography (1: 1 to 1: 3 hexanes/EtOAc) to give 4- Cinnolin-4-yl-piperazine-l-carboxylic acid tert-butyl ester (0.246 g, 38%) as a yellow oil. 1H NMR (CDC13, 400 MHz) 8 8. 91 (s, 1H), 8. 47 (d, J= 8.4 Hz, 1H), 7.97 (d, J= 8. 4 Hz, 1H), 7.80 (t, J= 7.2 Hz, 1H), 7.69 (t, J= 7.2 Hz, 1H), 3.74 (m, 4H), 3. 34 (m, 4H), 1.51 (s, 9H). LCMS (APCI+) tnlz 315 [M+H]’ ; Rt = 2.14 minutes.

The chemical industry reduces the impact on the environment during synthesis, Cinnolin-4-ol, , I believe this compound will play a more active role in future production and life.

Reference£º
Patent; ARRAY BIOPHARMA INC.; WO2005/51304; (2005); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

The important role of 875-66-1

875-66-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,875-66-1 ,Cinnolin-4-ol, other downstream synthetic routes, hurry up and to see

Name is Cinnolin-4-ol, as a common heterocyclic compound, it belongs to cinnoline compound, and cas is 875-66-1, its synthesis route is as follows.

To a suspension of NaH (60% in mineral oil, 0.099 g, 2.46 mmol) in DMF (5 mL) was added cinnolin-4-ol (prepared from 2-aminoacetophenone according to the procedures described in U. S. Patent No. 4,620, 000), 0. 300 g, 2.05 mmol) in DMF (2 mL) dropwise. The reaction mixture was warmed at 40 C and stirred for 30 minutes. After cooling, N-phenyltrifluoromethanesulfonimide (0.880 g, 2.46 mmol) in DMF (2 mL) was added, and the reaction mixture was stirred at room temperature for 1 hour. 1-Boc piperazine (0.765 g, 4.11 mmol) was added to the mixture. The reaction was stirred at 80 C for 4 hours. After cooling, the mixture was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc. The combined organic layers were washed with water, brine, dried and concentrated. The residue was purified by column chromatography (1: 1 to 1: 3 hexanes/EtOAc) to give 4- Cinnolin-4-yl-piperazine-l-carboxylic acid tert-butyl ester (0.246 g, 38%) as a yellow oil. 1H NMR (CDC13, 400 MHz) 8 8. 91 (s, 1H), 8. 47 (d, J= 8.4 Hz, 1H), 7.97 (d, J= 8. 4 Hz, 1H), 7.80 (t, J= 7.2 Hz, 1H), 7.69 (t, J= 7.2 Hz, 1H), 3.74 (m, 4H), 3. 34 (m, 4H), 1.51 (s, 9H). LCMS (APCI+) tnlz 315 [M+H]’ ; Rt = 2.14 minutes.

875-66-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,875-66-1 ,Cinnolin-4-ol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ARRAY BIOPHARMA INC.; WO2005/51304; (2005); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some tips on Cinnolin-4-ol

The chemical industry reduces the impact on the environment during synthesis,875-66-1,Cinnolin-4-ol,I believe this compound will play a more active role in future production and life.

875-66-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Cinnolin-4-ol, cas is 875-66-1,the cinnoline compound, it is a common compound, a new synthetic route is introduced below.

Cinnolin-4(1H)-one (5.0 g, 34.24 mol) was added to the K2CO3 ( 7.08 g, 51.36 mol) and 3- bromoprop-1-yne (3.11 mL, 41.09 mol) in ACN (20 mL) and the mixture stirred at 80 C for 4-8 h then reaction mixture was cool to rt. The mixture was concentrated, diluted with H2O (30 mL), and extracted with EtOAc (3 ¡Á 50 mL). The combined organic layers were dried (MgSO4), filtered and concentrated. Flash chromatography gave 4-(prop-2-yn-1-yloxy)cinnoline (13a). Synthesis of 4-(prop-2-yn-1-yloxy)cinnoline (4a). Yield (2.60 g, 65.5%). m.p. 100-110 C. Colourless solid.1H NMR (400 MHz, CDCl3) delta 8.34 (dd, J = 1.2, 1.2 Hz, 1H, Ar), 7.81-7.77 (m, 2H, Ar), 7.60 (d, J = 8.8 Hz, 1H, Ar), 7.46 (t, J = 8.0 Hz,1H, Ar), 5.14 (d, J = 2.4 Hz, 1H, -OCH2), 2.51 (t, J = 2.4 Hz, 1H, Alky). 13C NMR (100 MHz, CDCl3) delta 171.2, 140.6, 140.1, 134.0, 126.0, 125.2, 124.6, 115.1, 76.0, 75.7, 46.2. ESI-MS: m/z 185.27 [M+H]+. Anal. Calc. (C11H8N2O) C: 71.73; H: 4.38; N: 15.21. Found C: 71.80; H: 4.04; N: 15.28%.

The chemical industry reduces the impact on the environment during synthesis,875-66-1,Cinnolin-4-ol,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Boda, Sathish Kumar; Bommagani, Mohan Babu; Chitneni, Prasad Rao; Mokenapelli, Sudhakar; Yerrabelli, Jayaprakash Rao; Synthetic Communications; (2020);,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

New learning discoveries about 875-66-1

875-66-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,875-66-1 ,Cinnolin-4-ol, other downstream synthetic routes, hurry up and to see

Name is Cinnolin-4-ol, as a common heterocyclic compound, it belongs to cinnoline compound, and cas is 875-66-1, its synthesis route is as follows.

a. [4-CHLOROCINNOLINE] (9b). A mixture of 4-hydroxycinnoline (2.0 g, 13.7 mmol), phosphorus oxychloride (1.94 mL, 20.5 mmol), and pyridine (0.33 mL, 4.1 mmol) in [CHLOROBENZENE] (50 mL) was refluxed for 1 hour. Then the mixture was cooled and the solvent evaporated under vacuum, water was added, and the mixture was neutralized with solid sodium bicarbonate and extracted with chloroform (3 x 100 mL), washed with water (3 x 100 mL), dried [(MGS04)] and evaporated under vacuum, giving 1.84 g, in 82 % yield; [MP] [76-77 C] (lit mp 78 [C)] [; IH] NMR [(CDC13)] [8] 7.91 (m, 2H), 8.20 (dd, 1H, [J=6.] 2, [J=2.] 1), 8.57 (dd, 1H, J=6. 6, J=1. 8), 9.34 (s, [1H)] ; [13C NMR (CDCL3) No. ] 123.0, 124.9, 130.2, 131.6, 132.3, 133.8, 134.9, 144.4.

875-66-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,875-66-1 ,Cinnolin-4-ol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; RUTGERS, THE STATE UNIVERSITY; LAVOIE, Edmond, J.; RUCHELMAN, Alexander, L.; LIU, Leroy, F.; WO2004/14906; (2004); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some tips on 875-66-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 875-66-1, Cinnolin-4-ol

875-66-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Cinnolin-4-ol, cas is 875-66-1,the cinnoline compound, it is a common compound, a new synthetic route is introduced below.

Example 20: Synthesis of 1- [4- (5-FLUORO-2-METHOXYPHENYL)-2-HYDROXY-4-METHYL-2- TRIFLUOROMETHYLPENTYL]-LH-CINNOLIN-4-ONE To a suspension of 2- [2- (5-fluoro-2-methoxyphenyl)-2-methylpropyl]-2-trifluoromethyloxirane (216 mg) and cinnolin-4-ol (V. G. Chapoulaud et AL., Tetrahedron, 2000,56, pp. 5499-5507) (216 mg) in anhydrous ethanol (1.2 ML) was added sodium ethoxide (21 wt. % solution in ethanol, 276 PL). After heating at 85C for 16 hours, the reaction mixture was diluted with ethyl acetate, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (eluted with 40% ethyl acetate-hexanes) to give the title compound as a pale yellow solid (26 mg), m. p. 122C-123C.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 875-66-1, Cinnolin-4-ol

Reference£º
Patent; BOEHRINGER INGELHEIM PHARMACEUTICALS, INC.; WO2004/63163; (2004); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Downstream synthetic route of Cinnolin-4-ol

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 875-66-1, Cinnolin-4-ol

875-66-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Cinnolin-4-ol, cas is 875-66-1,the cinnoline compound, it is a common compound, a new synthetic route is introduced below.

Example 20: Synthesis of 1- [4- (5-FLUORO-2-METHOXYPHENYL)-2-HYDROXY-4-METHYL-2- TRIFLUOROMETHYLPENTYL]-LH-CINNOLIN-4-ONE To a suspension of 2- [2- (5-fluoro-2-methoxyphenyl)-2-methylpropyl]-2-trifluoromethyloxirane (216 mg) and cinnolin-4-ol (V. G. Chapoulaud et AL., Tetrahedron, 2000,56, pp. 5499-5507) (216 mg) in anhydrous ethanol (1.2 ML) was added sodium ethoxide (21 wt. % solution in ethanol, 276 PL). After heating at 85C for 16 hours, the reaction mixture was diluted with ethyl acetate, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (eluted with 40% ethyl acetate-hexanes) to give the title compound as a pale yellow solid (26 mg), m. p. 122C-123C.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 875-66-1, Cinnolin-4-ol

Reference£º
Patent; BOEHRINGER INGELHEIM PHARMACEUTICALS, INC.; WO2004/63163; (2004); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Analyzing the synthesis route of 875-66-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Cinnolin-4-ol, 875-66-1

875-66-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Cinnolin-4-ol, cas is 875-66-1,the cinnoline compound, it is a common compound, a new synthetic route is introduced below.

a. 4-Chloro-8-nitroquinoline (6a). This intermediate was prepared from 4-chloroquinoline (obtained by treating 4-hydroxyquinoline with [POC13] as [ DESCRIBED BY GOULEY, R. W., ET AL. , J. AMER. CHEM. SOC., 1947, 69, 303-306.4-] Chloroquinoline (10.0 g, 61.3 mmol) was added in small portions to sulfuric acid (45 mL) taking care to maintain the temperature at or below 15 C. Then the solution was cooled and maintained at-15 C during the addition of fuming nitric acid (9 mL). The mixture was allowed to warm to room temperature and stirred for an additional 3 hours. The reaction mix was poured on ice and basified (pH 9) with NH40H. The resulting precipitate was filtered, washed well with water, dried, and recrystallized from methanol to provide 7.5 g of 6a, in 59 % yield; m. p. = [128-129 C] (lit. m. p. = [129-130 C) ; IH] NMR [(CDC13)] [8] 7.67 (d, [1H,] J=4. 5), 7.75 (dd, 1H, J=8. 6 [HZ,] J=7. 6), 8.10 (dd, 1H, J=7. 6, J=1. 3), 8. 48 (dd, 1H,. [J=8.] [6,] J=1.3), 8.94 (d, 1H, J=4. 5); [13C] NMR [(CDC13)] [8] 123.0, 124.4, 126.5, 127.5, 128.3, 140.6, 143.2, 148.7, 152.1.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Cinnolin-4-ol, 875-66-1

Reference£º
Patent; RUTGERS, THE STATE UNIVERSITY; LAVOIE, Edmond, J.; RUCHELMAN, Alexander, L.; LIU, Leroy, F.; WO2004/14906; (2004); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

The important role of 875-66-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Cinnolin-4-ol, 875-66-1

875-66-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Cinnolin-4-ol, cas is 875-66-1,the cinnoline compound, it is a common compound, a new synthetic route is introduced below.

(0509) Compound 110 (292 mg, 2.00 mmol) was refluxed in POCl3 overnight. It was cooled to room temperature and poured into ice water, neutralized with Na2C03. The precipitation was filtered out and washed with water, dried by pulling air through. Product was obtained as light yellow solid. (0510) (243mg, 74%). 1H NMR (400 MHz, chloroform-i/) delta 9.35 (s, 1H), 8.57 (ddd, J= 8.5, 1.4, 0.7 Hz, 1H), 8.20 (ddd, J= 8.2, 1.6, 0.7 Hz, 1H), 7.97 – 7.83 (m, 2H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Cinnolin-4-ol, 875-66-1

Reference£º
Patent; THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE; YIN, Hang Hubert; ZHANG, Shuting; HU, Zhenyi; (114 pag.)WO2019/89648; (2019); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

The origin of a common compound about Cinnolin-4-ol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

A common heterocyclic compound, 875-66-1,Cinnolin-4-ol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 875-66-1

a. [4-CHLOROCINNOLINE] (9b). A mixture of 4-hydroxycinnoline (2.0 g, 13.7 mmol), phosphorus oxychloride (1.94 mL, 20.5 mmol), and pyridine (0.33 mL, 4.1 mmol) in [CHLOROBENZENE] (50 mL) was refluxed for 1 hour. Then the mixture was cooled and the solvent evaporated under vacuum, water was added, and the mixture was neutralized with solid sodium bicarbonate and extracted with chloroform (3 x 100 mL), washed with water (3 x 100 mL), dried [(MGS04)] and evaporated under vacuum, giving 1.84 g, in 82 % yield; [MP] [76-77 C] (lit mp 78 [C)] [; IH] NMR [(CDC13)] [8] 7.91 (m, 2H), 8.20 (dd, 1H, [J=6.] 2, [J=2.] 1), 8.57 (dd, 1H, J=6. 6, J=1. 8), 9.34 (s, [1H)] ; [13C NMR (CDCL3) No. ] 123.0, 124.9, 130.2, 131.6, 132.3, 133.8, 134.9, 144.4.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

Reference£º
Patent; RUTGERS, THE STATE UNIVERSITY; LAVOIE, Edmond, J.; RUCHELMAN, Alexander, L.; LIU, Leroy, F.; WO2004/14906; (2004); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics