New downstream synthetic route of 78593-33-6

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,3-Bromocinnoline,78593-33-6,its application will become more common.

A common heterocyclic compound, 78593-33-6,3-Bromocinnoline, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 78593-33-6

(a) 3-(4-Hydroxybenzenesulphonyl)cinnoline A mixture of 2.1 g (0.01 mol) of 3-bromocinnoline, 6.6 g (0.02 mol) of sodium 4-tosyloxybenzenesulphinate and 50 ml of dimethylsulphoxide was stirred and heated at 120 C. for 24 hours. The mixture was poured into water and extracted with dichloroethane. The dichloroethane solution was washed with water, dried on anhydrous sodium sulphate and filtered. The solvent was then evaporated with a rotatory evaporator to provide 2.5 g of an oily residue. The desired product was then isolated by chromatography on a silica column using dichlorethane/methanol 98/2. In this manner, 0.45 g of 3-(4-hydroxybenzenesulphonyl)cinnoline was obtained. Yield: 10.2%

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,3-Bromocinnoline,78593-33-6,its application will become more common.

Reference£º
Patent; Sanofi; US4994474; (1991); A;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some scientific research about Cinnoline-4-carboxylic acid

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnoline-4-carboxylic acid,21905-86-2,its application will become more common.

21905-86-2 A common heterocyclic compound, 21905-86-2,Cinnoline-4-carboxylic acid, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

1-(Ethoxycarbonyl)ethyl Cinnoline-4-carboxylate (32) A solution of 0.75 ml of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 20 ml of benzene was added to a stirred suspension of 0.87 g of 1 in 30 ml of benzene at room temperature. After one hour of stirring, 1.36 g of ethyl 2-bromopropionate was added and the mixture was heated at reflux for 6 hours. The mixture was cooled, diluted with 25 ml of benzene, washed with water, 1 N aqueous sodium bicarbonate, and brine. It then was dried (MgSO4), the solvent was evaporated and the residue was chromatographed on silica gel, using a 1:1 v:v mixture of cyclohexane and ethyl acetate as eluent, to give 32, as a yellow oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnoline-4-carboxylic acid,21905-86-2,its application will become more common.

Reference£º
Patent; E. I. Du Pont de Nemours and Company; US4699651; (1987); A;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some scientific research about Cinnolin-4-ol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnolin-4-ol,875-66-1,its application will become more common.

875-66-1 A common heterocyclic compound, 875-66-1,Cinnolin-4-ol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Cinnolin-4(1H)-one (5.0 g, 34.24 mol) was added to the K2CO3 ( 7.08 g, 51.36 mol) and 3- bromoprop-1-yne (3.11 mL, 41.09 mol) in ACN (20 mL) and the mixture stirred at 80 C for 4-8 h then reaction mixture was cool to rt. The mixture was concentrated, diluted with H2O (30 mL), and extracted with EtOAc (3 ¡Á 50 mL). The combined organic layers were dried (MgSO4), filtered and concentrated. Flash chromatography gave 4-(prop-2-yn-1-yloxy)cinnoline (13a). Synthesis of 4-(prop-2-yn-1-yloxy)cinnoline (4a). Yield (2.60 g, 65.5%). m.p. 100-110 C. Colourless solid.1H NMR (400 MHz, CDCl3) delta 8.34 (dd, J = 1.2, 1.2 Hz, 1H, Ar), 7.81-7.77 (m, 2H, Ar), 7.60 (d, J = 8.8 Hz, 1H, Ar), 7.46 (t, J = 8.0 Hz,1H, Ar), 5.14 (d, J = 2.4 Hz, 1H, -OCH2), 2.51 (t, J = 2.4 Hz, 1H, Alky). 13C NMR (100 MHz, CDCl3) delta 171.2, 140.6, 140.1, 134.0, 126.0, 125.2, 124.6, 115.1, 76.0, 75.7, 46.2. ESI-MS: m/z 185.27 [M+H]+. Anal. Calc. (C11H8N2O) C: 71.73; H: 4.38; N: 15.21. Found C: 71.80; H: 4.04; N: 15.28%.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnolin-4-ol,875-66-1,its application will become more common.

Reference£º
Article; Boda, Sathish Kumar; Bommagani, Mohan Babu; Chitneni, Prasad Rao; Mokenapelli, Sudhakar; Yerrabelli, Jayaprakash Rao; Synthetic Communications; (2020);,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

A new synthetic route of Cinnoline-4-carboxylic acid

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21905-86-2,Cinnoline-4-carboxylic acid,its application will become more common.

A common heterocyclic compound, 21905-86-2,Cinnoline-4-carboxylic acid, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 21905-86-2

EXAMPLE 5 n-Propyl Cinnoline-4-carboxylate (5) A suspension of 870 mg of 1, and 850 mg of carbonyidimidazole (CDII) in 30 ml of tetrahydrofuran (THF) was stirred at room temperature until CO2 evolution ceased (ca. 30 minutes). After being stirred for 2 hours, the resulting mixture was treated with 320 mg of dry nypropanol and 3 drops of a 0.1 M solution of sodium imidazole in THE. The mixture was held at room temperature overnight, then the solvent was evaporated and the residue was partitioned between water and ether. The etheral extract was washed with saturated sodium bicarbonate solution, then with brine, then dried (MgSO4) and stripped in a rotary evaporator. The residue was chromatographed over silica gel, using a 1:1 v:v mixture of cyclohexane and ethyl acetate as eluent, to give 5, as a yellow oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21905-86-2,Cinnoline-4-carboxylic acid,its application will become more common.

Reference£º
Patent; E. I. Du Pont de Nemours and Company; US4699651; (1987); A;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

New downstream synthetic route of 21905-86-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnoline-4-carboxylic acid,21905-86-2,its application will become more common.

A common heterocyclic compound, 21905-86-2,Cinnoline-4-carboxylic acid, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 21905-86-2

EXAMPLE 63f Synthesis of Cinnoline-4-carboxylic acid [2-((S)-2-imidazol-1-yl-1-pyridin-3-yl-ethoxy)-5-oxo-5,6,7,8-tetrahydro-naphthalen-1-yl]-amide (Compound 63f) The procedure in Example 63d step 3 was followed using cinnoline-4-carboxylic acid. The reaction was stirred at RT for 1 day and at reflux for 1 day. Purification by chromatography (SiO2, 5-8% MeOH/CH2Cl2 with 1% NH4OH) afforded the title compound as a foam (63 mg, 0.125 mmol, 44%). The structure was confirmed by NMR and mass spectrometry. MS m/z 505 (M++H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnoline-4-carboxylic acid,21905-86-2,its application will become more common.

Reference£º
Patent; Denny, William Alexander; Hutchings, Richard H; Johnson, Douglas S; Kaltenbronn, James Stanely; Lee, Ho Huat; Leonard, Daniele Marie; Milbank, Jared Bruce John; Repine, Joseph Thomas; Rewcastle, Gordon William; White, Andrew David; US2004/44057; (2004); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

Some scientific research about Cinnoline-4-carboxylic acid

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21905-86-2,Cinnoline-4-carboxylic acid,its application will become more common.

21905-86-2 A common heterocyclic compound, 21905-86-2,Cinnoline-4-carboxylic acid, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

EXAMPLE 2 Potassium Cinnoline-4-carboxylate (2) 5.10 g of (1) was added over 30 minutes to a vigorously stirred solution of 2.02 g of potassium carbonate in 25 ml of water, at room temperature. The resulting mixture was stirred for one hour at room temperature, then treated with charcoal, and after filtration the water was evaporated. The residue was azeotropically distilled with toluene and dried at 70 C. under reduced pressure, to give 2, as a light tan powder, m.p.: above 280 C.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21905-86-2,Cinnoline-4-carboxylic acid,its application will become more common.

Reference£º
Patent; E. I. Du Pont de Nemours and Company; US4699651; (1987); A;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

New downstream synthetic route of 875-66-1

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnolin-4-ol,875-66-1,its application will become more common.

A common heterocyclic compound, 875-66-1,Cinnolin-4-ol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 875-66-1

(0509) Compound 110 (292 mg, 2.00 mmol) was refluxed in POCl3 overnight. It was cooled to room temperature and poured into ice water, neutralized with Na2C03. The precipitation was filtered out and washed with water, dried by pulling air through. Product was obtained as light yellow solid. (0510) (243mg, 74%). 1H NMR (400 MHz, chloroform-i/) delta 9.35 (s, 1H), 8.57 (ddd, J= 8.5, 1.4, 0.7 Hz, 1H), 8.20 (ddd, J= 8.2, 1.6, 0.7 Hz, 1H), 7.97 – 7.83 (m, 2H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Cinnolin-4-ol,875-66-1,its application will become more common.

Reference£º
Patent; THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE; YIN, Hang Hubert; ZHANG, Shuting; HU, Zhenyi; (114 pag.)WO2019/89648; (2019); A1;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

A new synthetic route of 3-Bromocinnoline

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,78593-33-6,3-Bromocinnoline,its application will become more common.

A common heterocyclic compound, 78593-33-6,3-Bromocinnoline, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 78593-33-6

(a) 3-(4-Hydroxybenzenesulphonyl)cinnoline A mixture of 2.1 g (0.01 mol) of 3-bromocinnoline, 6.6 g (0.02 mol) of sodium 4-tosyloxybenzenesulphinate and 50ml of dimethylsulphoxide was stirred and heated at -20 C. for 24 hours. The mixture was poured into water and extracted with dichloroethane. The dichloroethane solution was washed with water, dried on anhydrous sodium sulphate and filtered. The solvent was then evaporated with a rotatory evaporator to provide 2.5 g of an oily residue. The desired product was then isolated by chromatography on a silica column using dichlorethane/methanol 98/2. In this manner, 0.45 g of 3-(4-hydroxybenzenesulphonyl)cinnoline was obtained. Yield 10.2%

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,78593-33-6,3-Bromocinnoline,its application will become more common.

Reference£º
Patent; Sanofi; US4957925; (1990); A;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics

The origin of a common compound about 875-66-1

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

A common heterocyclic compound, 875-66-1,Cinnolin-4-ol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 875-66-1

a. 4-Chloro-8-nitroquinoline (6a). This intermediate was prepared from 4-chloroquinoline (obtained by treating 4-hydroxyquinoline with [POC13] as [ DESCRIBED BY GOULEY, R. W., ET AL. , J. AMER. CHEM. SOC., 1947, 69, 303-306.4-] Chloroquinoline (10.0 g, 61.3 mmol) was added in small portions to sulfuric acid (45 mL) taking care to maintain the temperature at or below 15 C. Then the solution was cooled and maintained at-15 C during the addition of fuming nitric acid (9 mL). The mixture was allowed to warm to room temperature and stirred for an additional 3 hours. The reaction mix was poured on ice and basified (pH 9) with NH40H. The resulting precipitate was filtered, washed well with water, dried, and recrystallized from methanol to provide 7.5 g of 6a, in 59 % yield; m. p. = [128-129 C] (lit. m. p. = [129-130 C) ; IH] NMR [(CDC13)] [8] 7.67 (d, [1H,] J=4. 5), 7.75 (dd, 1H, J=8. 6 [HZ,] J=7. 6), 8.10 (dd, 1H, J=7. 6, J=1. 3), 8. 48 (dd, 1H,. [J=8.] [6,] J=1.3), 8.94 (d, 1H, J=4. 5); [13C] NMR [(CDC13)] [8] 123.0, 124.4, 126.5, 127.5, 128.3, 140.6, 143.2, 148.7, 152.1.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,875-66-1,Cinnolin-4-ol,its application will become more common.

Reference£º
Patent; RUTGERS, THE STATE UNIVERSITY; LAVOIE, Edmond, J.; RUCHELMAN, Alexander, L.; LIU, Leroy, F.; WO2004/14906; (2004); A2;,
Cinnoline – Wikipedia
Cinnoline – an overview | ScienceDirect Topics